Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Papers from the Regensburg Applied Biomechanics Symposium, June 2005
Guest editors: Joachim Hammerx and Michael Nerlichy
Article type: Research Article
Authors: Ohrndorf, A.; * | Krupp, U. | Christ, H.-J.
Affiliations: Institut für Werkstofftechnik, Universität Siegen, Paul-Bonatz-Str. 9-11, 57076 Siegen, Germany | [x] Mechanical Engineering Faculty, Laboratory for Materials Technology, University of Applied Science, Regensburg, Germany | [y] University Clinic, Department of Traumatology, Regensburg, Germany
Correspondence: [*] Corresponding author. Tel.: +49 271 2184; Fax: +49 271 2545; E-mail: ohrndorf@ifwt.mb.uni-siegen.de.
Abstract: The aim of this paper is to report on the characterization of the influences of foam homogeneity and the cell strut material on the mechanical behaviour and the fracture mode of metallic foams that are promising candidates for new perfectly tailored medical implants. For two open-cell foams with identical cell geometries produced in the same precision-casting process but using different cell strut materials, the stress-strain behaviour and the evolution of damage until fracture is compared. To account for effects arising from a change in the geometry of the cell structure and the resulting homogeneity of the foam, the main characteristics of fracture for the group of closed-cell foams were included in this study. Monotonic tests carried out in compression revealed that foam homogeneity is the major factor with respect to the formation of deformation bands prior to cell collapse in metallic foams. The influence of the cell strut ductility is particularly pronounced in monotonic tension where the fracture mode changes from extremely brittle fracture to strongly plastically deformed cells, with substantial fracture elongation. In tension-tension fatigue as well as under symmetric push-pull loading conditions, damage is governed by a combination of cyclic creep and fatigue crack propagation through the specimen. From a mechanistic point of view no fundamental differences between the three foams tested were detected for these loading conditions. However, in compression-compression fatigue the same dependencies in terms of homogeneity and ductility influence the mechanisms of strain evolution that are active in monotonic compression.
DOI: 10.3233/THC-2006-144-502
Journal: Technology and Health Care, vol. 14, no. 4-5, pp. 201-208, 2006
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl