Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Frontiers of Medical Informatics
Guest editors: Takami Yamaguchi and Shigeo Wada
Article type: Research Article
Authors: Shirai, Atsushia; * | Fujita, Ryob | Hayase, Toshiyukia
Affiliations: [a] Institute of Fluid Science, Tohoku University, Japan | [b] Graduate School of Information Science, Tohoku University, Japan | Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, 6-1-1 Aoba, Aramaki, Aoba, Sendai 980-8579, Japan
Correspondence: [*] Address for correspondence: Atsushi Shirai, Institute of Fluid Science, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577, Japan. Tel./Fax: +81 22 217 5678; E-mail: shirai@ifs.tohoku.ac.jp.
Abstract: The concentration of neutrophils in the pulmonary microvasculature is higher than in systemic large vessels. It is thought that the high concentration of neutrophils facilitates their effective recruitment to sites of inflammation. Thus, in order to understand the role of neutrophils in the immune system, it is important to clarify their flow characteristics in the pulmonary microvasculature. In previous studies, we numerically investigated the motion of a neutrophil through a single capillary segment modeled by a moderate axisymmetric constriction in a straight pipe, developing a mathematical model for the prediction of the transit time of the cell through the segment. In the present study, this model was extended for application to network simulation of the motion of neutrophils. First, we numerically investigated shape recovery of a neutrophil after expulsion from a narrow capillary segment. This process was modeled in two different phases: elastic recovery and viscous recovery. The resulting model was combined with the previously developed models to simulate motion of the cells and plasma flow in a capillary network. A numerical simulation of the motion of neutrophils and plasma flow in a simple lattice capillary network showed that neutrophils were widely dispersed in the network with an increased concentration.
DOI: 10.3233/THC-2005-13409
Journal: Technology and Health Care, vol. 13, no. 4, pp. 301-311, 2005
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl