Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Liang, Jun
Affiliations: P.O. Box 1247, Center for Composite Materials, Harbin Institute of Technology, Harbin 150001, PR China E-mail: liangj@hit.edu.cn
Abstract: In this paper, the effect of the lattice parameter of functionally graded materials on the stress field near crack tips subjected to a uniform anti-plane shear loading is investigated by means of the non-local theory. The traditional concepts of the non-local theory are extended to solve the fracture problem of functionally graded materials. To make the analysis tractable, it is assumed that the shear modulus varies exponentially with coordinate parallel to the crack. By use of the Fourier transform, the problem can be solved with the help of a pair of dual integral equations, in which the unknown variable is the displacement on the crack surface. To solve the dual integral equations, the displacement on the crack surface is expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularity is present at crack tips. The nonlocal elastic solutions yield a finite hoop stress at crack tips, thus allowing us to using the maximum stress as a fracture criterion. The magnitude of the finite stress field depends on the crack length, the parameter describing the functionally graded materials and the lattice parameter of materials.
Keywords: Crack, non-local theory, functionally graded materials, lattice parameter
Journal: Strength, Fracture and Complexity, vol. 4, no. 2, pp. 105-116, 2006
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl