Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: McClure, David* | Reiter, Jerome P.
Affiliations: Department of Statistical Science, Duke University, Durham, NC, USA
Correspondence: [*] Corresponding author: David McClure, Department of Statistical Science, Duke University, Durham, NC 27708, USA. E-mail:drm20@stat.duke.edu
Abstract: Several statistical agencies release synthetic microdata, i.e., data with all confidential values replaced with draws from statistical models, in order to protect data subjects' confidentiality. While fully synthetic data are safe from record linkage attacks, intruders might be able to use the released synthetic values to estimate confidential values for individuals in the collected data. We demonstrate and investigate this potential risk using two simple but informative scenarios: a single continuous variable possibly with outliers, and a three-way contingency table possibly with small counts in some cells. Beginning with the case that the intruder knows all but one value in the confidential data, we examine the effect on risk of decreasing the number of observations the intruder knows beforehand. We generally find that releasing synthetic data (1) can pose little risk to records in the middle of the distribution, and (2) can pose some risks to extreme outliers, although arguably these risks are mild. We also find that the effect of removing observations from an intruder's background knowledge heavily depends on how well that intruder can fill in those missing observations: the risk remains fairly constant if he/she can fill them in well, and drops quickly if he/she cannot.
Keywords: Confidentiality, disclosure, risk, synthetic
DOI: 10.3233/SJI-160957
Journal: Statistical Journal of the IAOS, vol. 32, no. 1, pp. 109-126, 2016
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl