You are viewing a javascript disabled version of the site. Please enable Javascript for this site to function properly.
Go to headerGo to navigationGo to searchGo to contentsGo to footer
In content section. Select this link to jump to navigation

Different methods to complete datasets used for capture-recapture estimation: Estimating the number of usual residents in the Netherlands

Abstract

We are interested in an estimate of the usual residents in the Netherlands. Capture-recapture estimation with three registers enables us to estimate the size of the total population, of which the usual residents are a part. However, usual residence cannot be used as a covariate because it is not available in one of the registers. We approach this as a missing data problem. There are different methods available to handle missing data. In this manuscript we use Expectation Maximization (EM) algorithm and Predictive Mean Matching (PMM). The EM algorithm is often used in categorical data analysis, but PMM has the advantage of flexibility in the choice for a specific part of the observed data used for the imputation of the missing data. Four scenarios have been identified where the missing data are completed via either the EM algorithm or PMM imputation, resulting in different population size estimates for usual residence. It was found that the different scenarios lead to different population size estimates. Even small changes in the completed data lead to different population size estimates. In this study PMM imputation performs best according flexibility and it is theoretically better motivated.