Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Araveeporn, Autcha* | Klomwises, Yuwadee
Affiliations: Department of Statistics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
Correspondence: [*] Corresponding author: Autcha Araveeporn, Department of Statistics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, 10520, Thailand. E-mail: autcha.ar@kmitl.ac.th.
Abstract: Markov Chain Monte Carlo (MCMC) method has been a popular method for getting information about probability distribution for estimating posterior distribution by Gibbs sampling. So far, the standard methods such as maximum likelihood and logistic ridge regression methods have represented to compare with MCMC. The maximum likelihood method is the classical method to estimate the parameter on the logistic regression model by differential the loglikelihood function on the estimator. The logistic ridge regression depends on the choice of ridge parameter by using crossvalidation for computing estimator on penalty function. This paper provides maximum likelihood, logistic ridge regression, and MCMC to estimate parameter on logit function and transforms into a probability. The logistic regression model predicts the probability to observe a phenomenon. The prediction accuracy evaluates in terms of the percentage with correct predictions of a binary event. A simulation study conducts a binary response variable by using 2, 4, and 6 explanatory variables, which are generated from multivariate normal distribution on the positive and negative correlation coefficient or called multicollinearity problem. The criterion of these methods is to compare by a maximum of predictive accuracy. The outcomes find that MCMC satisfies all situations.
Keywords: Logistic ridge regression, Markov Chain Monte Carlo, maximum likelihood
DOI: 10.3233/SJI-200655
Journal: Statistical Journal of the IAOS, vol. 36, no. 4, pp. 1253-1259, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl