Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Czeslik, C.; | Jackler, G. | Royer, C.
Affiliations: Universität Dortmund, Physikalische Chemie I, Otto‐Hahn‐Str. 6, D‐44221 Dortmund, Germany | Université de Montpellier 1, Centre de Biochimie Structurale, F‐36060 Montpellier, France
Note: [] Corresponding author. Tel.: +49 231 755 3903; Fax: +49 231 755 3901; E‐mail: claus@steak.chemie.uni‐dortmund.de.
Abstract: Total internal reflection fluorescence (TIRF) spectroscopy has been used to study conformational changes of hen egg white lysozyme induced by interaction with the water/quartz interface. TIRF spectra have been measured over a large temperature range and are compared to the corresponding solution spectra. It has been found that the wavelength of maximum fluorescence intensity of adsorbed lysozyme is red‐shifted by about 7 nm relative to that of dissolved lysozyme in the temperature range of about 20–60°C. This observation indicates that lysozyme is partially unfolding when it is adsorbing on quartz. Using optical reflectometry a drastic temperature‐induced increase of the degree of adsorption of lysozyme and staphylococcal nuclease (SNase) on silicon wafers has been measured which suggests that the corresponding adsorption processes are endothermic and thus entropically driven. The major contribution to this entropy gain will probably originate from conformational changes at lower temperatures. The experimental results indicate that proteins with a smaller Gibbs energy of unfolding have a higher tendency for adsorption. Above the temperatures of unfolding of the proteins in solution, the dehydration of hydrophobic residues, which are exposed to water in the thermally unfolded state, are the most likely driving force for the adsorption of lysozyme and SNase on silicon oxide.
Journal: Spectroscopy, vol. 16, no. 3-4, pp. 139-145, 2002
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl