Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Smith, Suzanne D.
Affiliations: Armstrong Laboratory, Wright-Patterson Air Force Base, OH 45433-7901
Abstract: The driving-point impedance technique was applied to identify nonlinear resonance behavior in the human exposed to sinusoidal vibration between 3 and 20 Hz at three acceleration levels. Up to four regions of resonance were observed. A significant decline in the first and fourth resonance frequency and the disappearance of the second resonance peak occurred with a fivefold increase in the acceleration level. A proposed, base-excited five degree-of-freedom model, representing major dynamic structures in the human, proved highly successful in simulating the typical impedance responses. The model was used to quantify the variations in the mass, stiffness, and damping characteristics associated with changes in the acceleration level.
DOI: 10.3233/SAV-1994-1504
Journal: Shock and Vibration, vol. 1, no. 5, pp. 439-450, 1994
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl