Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Fei, Cheng-Wei | Bai, Guang-Chen
Affiliations: School of Jet Propulsion, Beijing University of Aeronautics and Astronautics, Beijing, China
Note: [] Corresponding author: Cheng-Wei Fei, School of Jet Propulsion, Beijing University of Aeronautics and Astronautics, Beijing 100191, China. Tel.: +86 152 0112 7536; E-mail: feicw544@163.com
Abstract: In order to correctly analyze aeroengine whole-body vibration signals, Wavelet Correlation Feature Scale Entropy (WCFSE) and Fuzzy Support Vector Machine (FSVM) (WCFSE-FSVM) method was proposed by fusing the advantages of the WCFSE method and the FSVM method. The wavelet coefficients were known to be located in high Signal-to-Noise Ratio (S/N or SNR) scales and were obtained by the Wavelet Transform Correlation Filter Method (WTCFM). This method was applied to address the whole-body vibration signals. The WCFSE method was derived from the integration of the information entropy theory and WTCFM, and was applied to extract the WCFSE values of the vibration signals. Among the WCFSE values, the W_{FSE1} and W_{CFSE2} values on the scale 1 and 2 from the high band of vibration signal were believed to acceptably reflect the vibration feature and were selected to construct the eigenvectors of vibration signals as fault samples to establish the WCFSE-FSVM model. This model was applied to aeroengine whole-body vibration fault diagnosis. Through the diagnoses of four vibration fault modes and the comparison of the analysis results by four methods (SVM, FSVM, WESE-SVM, WCFSE-FSVM), it is shown that the WCFSE-FSVM method is characterized by higher learning ability, higher generalization ability and higher anti-noise ability than other methods in aeroengine whole-vibration fault analysis. Meanwhile, this present study provides a useful insight for the vibration fault diagnosis of complex machinery besides an aeroengine.
Keywords: Wavelet Correlation Feature Scale Entropy (WCFSE), Fuzzy Support Vector Machine (FSVM), aeroengine whole-body vibration, fault diagnosis, WCFSE-FSVM method
DOI: 10.3233/SAV-2012-00748
Journal: Shock and Vibration, vol. 20, no. 2, pp. 341-349, 2013
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl