Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: International Conference on Structural Engineering Dynamics – ICEDyn 2011
Article type: Research Article
Authors: Koziol, Piotr | Neves, M.M.
Affiliations: Department of Civil and Environmental Engineering, Koszalin University of Technology, Koszalin, Poland | IDMEC-IST, Instituto Superior Técnico, Lisboa, Portugal
Note: [] Corresponding author: Piotr Koziol, Department of Civil and Environmental Engineering, Koszalin University of Technology, Sniadeckich 2, 75-453 Koszalin, Poland. E-mail: piotr.koziol@wbiis.tu.koszalin.pl
Abstract: A wavelet based approach is proposed in this paper for analysis and optimization of the dynamical response of a multilayered medium subject to a moving load with respect to the material properties and thickness of supporting half-space. The investigated model consists of a load moving along a beam resting on a surface of a multilayered medium with infinite thickness and layers with different physical properties. The theoretical model is described by the Euler-Bernoulli equation for the beam and the Navier's elastodynamic equation of motion for a viscoelastic half-space. The moving load is modelled by a finite series of distributed harmonic loads. A special method based on a wavelet expansion of functions in the transform domain is adopted for calculation of displacements in the physical domain. The interaction between the beam and the multilayered medium is analyzed in order to obtain the vibration response at the surface and the critical velocities associated. The choice of the specific values of the design parameters for each layer, which minimize the vibration response of the multilayered medium, can be seen as a structural optimization problem. A first approach for using optimization techniques to explore the potential of the wavelet model is presented and briefly discussed. Results from the analysis of the vibration response are presented to illustrate the dynamic characterization obtained by using this method. Numerical examples reflecting the results of numerical optimizations with respect to a multilayered medium parameters are also presented.
Keywords: Multilayered half-space, wavelet-based approximation, vibrations, structural optimization, distributed moving load
DOI: 10.3233/SAV-2012-0707
Journal: Shock and Vibration, vol. 19, no. 5, pp. 1009-1018, 2012
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl