Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: International Conference on Structural Engineering Dynamics – ICEDyn 2011
Article type: Research Article
Authors: Souza, L.C.G. | Gonzáles, R.G.
Affiliations: National Institute for Space Research- INPE, Brazilian Aeronautical Company-Embraer, São Jose dos Campos, SP, Brasil
Note: [] Correcponding author: L.C.G. Souza, National Institute for Space Research-INPE, Brazilian Aeronautical Company-Embraer, São Jose dos Campos, SP, Brasil. E-mail: gadelha@dem.inpe.br
Abstract: Design of Satellite Attitude Control System (ACS) that involves plant uncertainties and large angle manoeuvres following a stringent pointing control, may require new non-linear control techniques in order to have adequate stability, good performance and robustness. In that context, experimental validation of new non-linear control techniques through prototypes is the way to increase confidence in the controller designed. The Space Mechanics and Control Division (DMC) of INPE is constructing a 3-D simulator to supply the conditions for implementing and testing satellite ACS hardware and software. The 3-D simulator can accommodate various satellites components; like sensors, actuators, computers and its respective interface and electronic. Depending on the manoeuvre the 3-D simulator plant can be highly non-linear and if the simulator inertia parameters are not well determined the plant also can present some kind of uncertainty. As a result, controller designed by linear control technique can have its performance and robustness degraded, therefore controllers designed by new non-linear approach must be considered. This paper presents the application of the State-Dependent Riccati Equation (SDRE) method in conjunction with Kalman filter technique to design a controller for the DMC 3-D satellite simulator. The SDRE can be considered as the non-linear counterpart of Linear Quadratic Regulator (LQR) control technique. Initially, a simple comparison between the LQR and SDRE controller is performed. After that, practical applications are presented to address problems like presence of noise in process and measurements and incomplete state information. Kalman filter is considered as state observer to address these issues. The effects of the plant non-linearities and noises (uncertainties) are considered in the performance and robustness of the controller designed by the SDRE and Kalman filter. The 3-D simulator simulink-based model has been developed to perform the simulations examples to investigate the SDRE controller performance using the states estimated by the Kalman filter. Simulations have demonstrated the validity of the proposed approach, once the SDRE controller has presented good stability margin, great performance and robustness.
Keywords: Satellite simulator, SDRE methodology, robust control
DOI: 10.3233/SAV-2012-0701
Journal: Shock and Vibration, vol. 19, no. 5, pp. 939-946, 2012
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl