Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: International Conference on Structural Engineering Dynamics – ICEDyn 2009
Article type: Research Article
Authors: Koziol, Piotr | Mares, Cristinel
Affiliations: Koszalin University of Technology, Department of Civil and Environmental Engineering, Sniadeckich 2, 75-453 Koszalin, Poland | Brunel University, School of Engineering and Design, Uxbridge, Middlesex, UB8 3PH, UK
Note: [] Corresponding author. E-mail: piotr.koziol@wbiis.tu.koszalin.pl
Abstract: This paper analyses theoretically the response of a solid for fast moving trains using models related to real situations: a load moving in a tunnel and a load moving on a surface. The mathematical model is described by Navier's elastodynamic equation of motion for the soil and Euler-Bernoulli equation for the beam with appropriate boundary conditions. Two modelling approaches are investigated: the model with half space under the beam and the model with finite thickness of supporting medium. The problem of singularities for displacements calculation is discussed in relation with boundary conditions and types of considered loads: harmonic and constant, point and distributed moving loads. The analysis in frequency-time and frequency-velocity domains is presented and discussed with regard to critical velocities. A wavelet approximation method based on application of coiflet filters is used for the derivation of displacements in physical domain. A new, modified filter is used in numerical calculations allowing to alleviate numerical difficulties related to the form of approximating sequences based on classical filters, formulated in previous publications. The effectiveness of the coiflet approach is discussed for filter coefficients with different order of accuracy. This methodology is very efficient for the analysis in the range of relatively high and low load frequencies (treated as an approximation of a constant load) which are especially important for the analysis of vibrations generated by trains moving with velocities near critical values. Results of numerical simulations are presented, demonstrating their utility for modelling and preliminary analysis of complex models.
Keywords: Moving load, critical velocity, vibrations, wavelet method
DOI: 10.3233/SAV-2010-0540
Journal: Shock and Vibration, vol. 17, no. 4-5, pp. 461-472, 2010
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl