Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Torvik, Peter J. | Runyon, Brian
Affiliations: Air Force Institute of Technology, Universal Technology Incorporated, 1866 Winchester Road, Xenia, OH 45385, USA | AFRL/PRTS, Wright-Patterson AFB, OH 45433, USA
Note: [] Corresponding author. Tel.: +1 937 374 0521; Fax: +1 775 306 0069; E-mail: Torvik@att.net
Abstract: The method of Modal Strain Energy (MSE) enables predictions of modal loss factors for vibrating systems from finite element analyses without evaluation of a complex-valued frequency response or a complex-valued frequency. While the method is simple, some error results; especially if the dissipative material has the high loss factor characteristic of materials added to increase system damping. Several methods for reducing this error through modifications to MSE have been suggested. In this work, the exact loss factor for a simple mechanical system is found. The method of Modal Strain Energy (MSE) is then used to find the loss factor for that prototype system and errors are evaluated in terms of system parameters. Comparisons are also made to predictions with several modifications to MSE. A modification due to Rongong is found to provide significant improvement. The use of this modification together with MSE is shown to lead to lower and upper bounds for the system loss factor. As the prototype system is shown to be mechanically equivalent to constrained layer damping configurations, the findings are applicable to the analysis and design of optimized sandwich beams, plates, and damping tapes. Results are given for beams and plates with constrained layer treatments.
Keywords: Damping, modal strain energy, modal loss factors
Journal: Shock and Vibration, vol. 14, no. 5, pp. 339-353, 2007
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl