Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: XI Diname
Article type: Research Article
Authors: Marques, Flávio D. | Belo, Eduardo M. | Oliveira, Vilma A. | Rosolen, José R. | Simoni, Andréia R.
Affiliations: Department of Aeronautical Engineering, Engineering School of Sao Carlos, University of Sao Paulo, Av. Trabalhador Sancarlense, 400, 13561-020, Sao Carlos, SP, Brazil
Note: [] Corresponding author. Tel.: +55 16 3373 9370; Fax: +55 16 3373 9590; E-mail: fmarques@sc.usp.br
Abstract: Stall-induced aeroelastic motion may present severe non-linear behavior. Mathematical models for predicting such phenomena are still not available for practical applications and they are not enough reliable to capture physical effects. Experimental data can provide suitable information to help the understanding of typical non-linear aeroelastic phenomena. Dynamic systems techniques based on time series analysis can be adequately applied to non-linear aeroelasticity. When experimental data are available, the methods of state space reconstruction have been widely considered. This paper presents the state space reconstruction approach for the characterization of the stall-induced aeroelastic non-linear behavior. A wind tunnel scaled wing model has been tested. The wing model is subjected to different airspeeds and dynamic incidence angle variations. The method of delays is used to identify an embedded attractor in the state space from experimentally acquired aeroelastic response time series. To obtain an estimate of the time delay used in the state space reconstruction from time series, the autocorrelation function analyis is used. For the calculation of the embedding dimension the correlation integral approach is considered. The reconstructed attractors can reveal typical non-linear structures associated, for instance, to chaos or limit cycles.
Keywords: Aeroelasticity, state space reconstruction, stall-induced vibration, method of delays, non-linear dynamics
Journal: Shock and Vibration, vol. 13, no. 4-5, pp. 393-407, 2006
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl