Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Elahinia, Mohammad H. | Koo, Jeong-Hoi | Tan, Honghao
Affiliations: Dynamic and Smart Systems Laboratory, Mechanical Industrial and Manufacturing Engineering Department, The University of Toledo, 2801 West Bancroft MS312, Toledo, OH 43606, USA. Tel.: +1 419 530 8224; Fax: +1 419 530 8206; E-mail: mohammad.elahinia@utoledo.edu | Department of Manufacturing and Mechanical Engineering Miami University, Oxford, OH 45056, USA. E-mail: koo@muohio.edu | Dynamic and Smart Systems Laboratory, Mechanical Industrial and Manufacturing Engineering Department, The University of Toledo, USA. E-mail: htan@utoledo.edu
Abstract: A conventional passive tuned vibration absorber (TVA) is effective when it is precisely tuned to the frequency of a vibration mode; otherwise, it may amplify the vibrations of the primary system. In many applications, the frequency often changes over time. For example, adding or subtracting external mass on the existing primary system results in changes in the system's natural frequency. The frequency changes of the primary system can significantly degrade the performance of TVA. To cope with this problem, many alternative TVAs (such as semiactive, adaptive, and active TVAs) have been studied. As another alternative, this paper investigates the use of Shape Memory Alloys (SMAs) in passive TVAs in order to improve the robustness of the TVAs subject to mass change in the primary system. The proposed SMA-TVA employs SMA wires, which exhibit variable stiffness, as the spring element of the TVA. This allows us to tune effective stiffness of the TVA to adapt to the changes in the primary system's natural frequency. The simulation model, presented in this paper, contains the dynamics of the TVA along with the SMA wire model that includes phase transformation, heat transfer, and the constitutive relations. Additionally, a PID controller is included for regulating the applied voltage to the SMA wires in order to maintain the desired stiffness. The robustness analysis is then performed on both the SMA-TVA and the equivalent passive TVA. For our robustness analysis, the mass of the primary system is varied by ± 30% of its nominal mass. The simulation results show that the SMA-TVA is more robust than the equivalent passive TVA in reducing peak vibrations in the primary system subject to change of its mass.
Keywords: Shape memory alloy, tuned vibration absorber, modeling, control
Journal: Shock and Vibration, vol. 12, no. 5, pp. 349-361, 2005
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl