Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: COBEM 2001
Article type: Research Article
Authors: Coronado, Alberto | Trindade, Marcelo A. | Sampaio, Rubens
Affiliations: Departamento de Engenharia Mecânica, PUC-Rio, Rua Marquês de São Vicente 225, 22453-900, Rio de Janeiro, Brazil. Tel.: +55 21 3114 1178; Fax: +55 21 3314 1165; E-mail: beto_cm@yahoo.com; trindade@mec.puc-rio.br; rsampaio@mec.puc-rio.br
Abstract: Even though there is a growing interest in active vibration isolation systems, passive approaches are still the best choice in many cases because they are inherently the simplest and of lowest cost. Moreover, better comprehension of the dynamics and specially of the damping behavior in passive systems is required for successful implementation of active schemes. In the vast literature of passive isolation systems, there are not many works that consider damping models more elaborated than the widely used complex modulus. In this work a passive isolation system composed of a base and two isolators, modelled as Timoshenko beams, and a vibration source, modelled as a rigid body, is considered. For the isolators, two different viscoelastic models are considered: the Anelastic Displacement Fields (ADF) and Fractional Calculus (FC), which will be compared with the complex modulus model. The results show that both ADF and FC models lead to better approximation of dissipated energy, since they account for frequency-dependence of the viscoelastic isolators. Analysis of the curve-fitting of material parameters, using ADF and FC models has shown that generally less parameters are needed by FC model, for the same fitting quality, although optimization results depends strongly on the initial guess for the solution.
Keywords: viscoelastic models, vibration isolation, power flow
Journal: Shock and Vibration, vol. 9, no. 4-5, pp. 253-264, 2002
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl