Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Guo, Zhaochen | Barbosa, Denilson; *
Affiliations: Department of Computing Science, University of Alberta, Edmonton, AB, Canada. E-mails: zhaochen@ualberta.ca, denilson@ualberta.ca
Correspondence: [*] Corresponding author. E-mail: denilson@ualberta.ca.
Abstract: Named Entity Disambiguation is the task of assigning entities from a Knowledge Graph (KG) to mentions of such entities in a textual document. The state-of-the-art for this task balances two disparate sources of similarity: lexical, defined as the pairwise similarity between mentions in the text and names of entities in the KG; and semantic, defined through some graph-theoretic property of a subgraph of the KG induced by the choice of entities for each mention. Departing from previous work, our notion of semantic similarity is rooted in Information Theory and is defined as the mutual information between random walks on the disambiguation graph induced by choice of entities for each mention. We describe an iterative algorithm based on this idea, and show an extension that uses learning-to-rank, which yields further improvements. Our experimental evaluation demonstrates that this approach is robust and very competitive on well-known existing benchmarks. We also justify the need for new and more difficult benchmarks, and provide an extensive experimental comparison of our method and previous work on these new benchmarks.
Keywords: Named entities, entity linking, entity disambiguation, relatedness measure, random walk, benchmarking
DOI: 10.3233/SW-170273
Journal: Semantic Web, vol. 9, no. 4, pp. 459-479, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl