Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Bu, Qiong; * | Simperl, Elena | Zerr, Sergej | Li, Yunjia
Affiliations: School of Electronics and Computer Science, University of Southampton, UK. E-mails: qb1g13@soton.ac.uk, e.simperl@soton.ac.uk, s.zerr@soton.ac.uk, yl2@soton.ac.uk
Correspondence: [*] Corresponding author. E-mail: qb1g13@soton.ac.uk.
Abstract: DBpedia is at the core of the Linked Open Data Cloud and widely used in research and applications. However, it is far from being perfect. Its content suffers from many flaws, as a result of factual errors inherited from Wikipedia or incomplete mappings from Wikipedia infobox to DBpedia ontology. In this work we focus on one class of such problems, un-typed entities. We propose a hierarchical tree-based approach to categorize DBpedia entities according to the DBpedia ontology using human computation and paid microtasks. We analyse the main dimensions of the crowdsourcing exercise in depth in order to come up with suggestions for workflow design and study three different workflows with automatic and hybrid prediction mechanisms to select possible candidates for the most specific category from the DBpedia ontology. To test our approach, we run experiments on CrowdFlower using a gold standard dataset of 120 previously unclassified entities. In our studies human-computation driven approaches generally achieved higher precision at lower cost when compared to workflows with automatic predictors. However, each of the tested workflows has its merit and none of them seems to perform exceptionally well on the entities that the DBpedia Extraction Framework fails to classify. We discuss these findings and their potential implications for the design of effective crowdsourced entity classification in DBpedia and beyond.
Keywords: Task design, workflow design, entity classification, DBpedia, microtask crowdsourcing, CrowdFlower
DOI: 10.3233/SW-170261
Journal: Semantic Web, vol. 9, no. 3, pp. 337-354, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl