Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Knowledge Graphs: Construction, Management and Querying
Guest editors: Mayank Kejriwal, Vanessa Lopez and Juan F. Sequeda
Article type: Research Article
Authors: Pirrò, Giuseppe; *; **
Affiliations: ICAR-CNR, Italian National Research Council, Rende, CS, Italy. E-mail: pirro@icar.cnr.it
Correspondence: [**] Corresponding author. E-mail: pirro@icar.cnr.it.
Note: [*] Part of this work was done while the author was working in the WeST group at the University of Koblenz-Landau, Germany.
Abstract: Knowledge graphs (KGs) are a key ingredient to complement search results, discover entities and their relations and support several knowledge discovery tasks. We face the problem of building relatedness explanations, that is, graphs that can explain how a pair of entities is related in a KG. Explanations can be used in a variety of tasks; from exploratory search to query answering. We formalize the notion of explanation and present two algorithms. The first, E4D (Explanations from Data), assembles explanations starting from all paths interlinking the source and target entity in the data. The second algorithm E4S (Explanations from Schema) builds explanations focused on a specific relatedness perspective expressed by providing a predicate. E4S first generates candidate explanation patterns at the level of schema; then, it assembles explanations by proceeding to their verification in the data. Given a set of paths, found by E4D or E4S, we describe different criteria to build explanations based on information-theory, diversity, and their combination. As a concrete use-case of relatedness explanations, we introduce relatedness-based KG querying, which revisits the query-by-example paradigm from the perspective of relatedness explanations. We implemented all the machinery in the RECAP tool, which is based on RDF and SPARQL. We discuss an evaluation of the explanation building algorithms and a comparison of RECAP with related systems on real-world data.
Keywords: Knolwedge graphs, explanations, patterns, relatedness-based querying
DOI: 10.3233/SW-190348
Journal: Semantic Web, vol. 10, no. 6, pp. 963-990, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl