Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Subtitle: Processing large graphs in seconds
Article type: Research Article
Authors: Stutz, Philip | Strebel, Daniel | Bernstein, Abraham; *
Affiliations: University of Zurich, Switzerland. E-mail: bernstein@ifi.uzh.ch
Correspondence: [*] Corresponding author. E-mail: bernstein@ifi.uzh.ch.
Abstract: Both researchers and industry are confronted with the need to process increasingly large amounts of data, much of which has a natural graph representation. Some use MapReduce for scalable processing, but this abstraction is not designed for graphs and has shortcomings when it comes to both iterative and asynchronous processing, which are particularly important for graph algorithms. This paper presents the Signal/Collect programming model for scalable synchronous and asynchronous graph processing. We show that this abstraction can capture the essence of many algorithms on graphs in a concise and elegant way by giving Signal/Collect adaptations of algorithms that solve tasks as varied as clustering, inferencing, ranking, classification, constraint optimisation, and even query processing. Furthermore, we built and evaluated a parallel and distributed framework that executes algorithms in our programming model. We empirically show that our framework efficiently and scalably parallelises and distributes algorithms that are expressed in the programming model. We also show that asynchronicity can speed up execution times. Our framework can compute a PageRank on a large (>1.4 billion vertices, >6.6 billion edges) real-world graph in 112 seconds on eight machines, which is competitive with other graph processing approaches.
Keywords: Distributed computing, scalability, programming abstractions, programming models, graph processing
DOI: 10.3233/SW-150176
Journal: Semantic Web, vol. 7, no. 2, pp. 139-166, 2016
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl