Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Applications Analysis
Article type: Research Article
Authors: ANDERSON, CHARLES W. | DEVULAPALLI, SAIKUMAR V. | STOLZ, ERIK A.
Affiliations: Department of Computer Science, Colorado State University, Fort Collins, CO 80523; E-mail: {anderson,devulapa}@cs.colostate.edu | Department of Electrical Engineering, Colorado State University, Fort Collins, CO 80523
Abstract: EEG analysis has played a key role in the modeling of the brain's cortical dynamics, but relatively little effort has been devoted to developing EEG as a limited means of communication. If several mental states can be reliably distinguished by recognizing patterns in EEG, then a paralyzed person could communicate to a device such as a wheelchair by composing sequences of these mental states. EEG pattern recognition is a difficult problem and hinges on the success of finding representations of the EEG signals in which the patterns can be distinguished. In this article, we report on a study comparing three EEG representations, the unprocessed signals, a reduced-dimensional representation using the Karhunen – Loève transform, and a frequency-based representation. Classification is performed with a two-layer neural network implemented on a CNAPS server (128 processor, SIMD architecture) by Adaptive Solutions, Inc. Execution time comparisons show over a hundred-fold speed up over a Sun Sparc 10. The best classification accuracy on untrained samples is 73% using the frequency-based representation.
Journal: Scientific Programming, vol. 4, no. 3, pp. 171-183, 1995
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl