Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Large-Scale Programming Tools and Environments
Article type: Research Article
Authors: Hernandez, Oscar | Chapman, Barbara | Jin, Haoqiang
Affiliations: Computer Science Department, University of Houston, Houston, TX, USA. E-mails: {oscar, chapman}@cs.uh.edu | NASA Advanced Supercomputing Division, NASA Ames Research Center, Moffet Field, CA, USA. E-mail: hjin@nas.nasa.gov
Abstract: We have developed an environment, based upon robust, existing, open source software, for tuning applications written using MPI, OpenMP or both. The goal of this effort, which integrates the OpenUH compiler and several popular performance tools, is to increase user productivity by providing an automated, scalable performance measurement and optimization system. In this paper we describe our environment, show how these complementary tools can work together, and illustrate the synergies possible by exploiting their individual strengths and combined interactions. We also present a methodology for performance tuning that is enabled by this environment. One of the benefits of using compiler technology in this context is that it can direct the performance measurements to capture events at different levels of granularity and help assess their importance, which we have shown to significantly reduce the measurement overheads. The compiler can also help when attempting to understand the performance results: it can supply information on how a code was translated and whether optimizations were applied. Our methodology combines two performance views of the application to find bottlenecks. The first is a high level view that focuses on OpenMP/MPI performance problems such as synchronization cost and load imbalances; the second is a low level view that focuses on hardware counter analysis with derived metrics that assess the efficiency of the code. Our experiments have shown that our approach can significantly reduce overheads for both profiling and tracing to acceptable levels and limit the number of times the application needs to be run with selected hardware counters. In this paper, we demonstrate the workings of this methodology by illustrating its use with selected NAS Parallel Benchmarks and a cloud resolving code.
Keywords: Compiler optimizations, performance tuning methodology, feedback directed optimizations, performance tools
DOI: 10.3233/SPR-2008-0253
Journal: Scientific Programming, vol. 16, no. 2-3, pp. 135-153, 2008
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl