Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Lemeire, Jan | Dirkx, Erik | Verbist, Frederik
Affiliations: ETRO Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
Note: [] Corresponding author. E-mail: jan.lemeire@vub.ac.be
Abstract: Causal modeling and the accompanying learning algorithms provide useful extensions for in-depth statistical investigation and automation of performance modeling. We enlarged the scope of existing causal structure learning algorithms by using the form-free information-theoretic concept of mutual information and by introducing the complexity criterion for selecting direct relations among equivalent relations. The underlying probability distribution of experimental data is estimated by kernel density estimation. We then reported on the benefits of a dependency analysis and the decompositional capacities of causal models. Useful qualitative models, providing insight into the role of every performance factor, were inferred from experimental data. This paper reports on the results for a LU decomposition algorithm and on the study of the parameter sensitivity of the Kakadu implementation of the JPEG-2000 standard. Next, the analysis was used to search for generic performance characteristics of the applications.
Keywords: Performance modeling, modeling techniques, performance attributes, smoothing, graph algorithms, multivariate statistics, machine learning
Journal: Scientific Programming, vol. 15, no. 3, pp. 121-136, 2007
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl