Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Du, Yimeng Linaa | Sergeeva, Elena G.b | Stein, Donald G.a; b; *
Affiliations: [a] Emory University College of Arts and Sciences, Neuroscience and Behavioral Biology Program, GA, USA | [b] Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
Correspondence: [*] Corresponding author: Donald G. Stein, Ph.D., Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA. Tel.: +1 404 273 5226; E-mail: dstei04@emory.edu.
Abstract: Background:There is growing evidence that the TIR-domain-containing adapter-inducing interferon-β (TRIF) pathway is implicated in the modulation of neuroinflammation following injuries to the brain and retina. After exposure to injury or to excitotoxic pathogens, toll-like receptors (TLR) activate the innate immune system signaling cascade and stimulate the release of inflammatory cytokines. Inhibition of the TLR4 receptor has been shown to enhance retinal ganglion cell (RGC) survival in optic nerve crush (ONC) and in ischemic injury to other parts of the brain. Objective:Based on this evidence, we tested the hypothesis that mice with the TRIF gene knocked out (TKO) will demonstrate decreased inflammatory responses and greater functional recovery after ONC. Methods:Four experimental groups –TKO ONC (12 males and 8 females), WT ONC (10 males and 8 females), TKO sham (9 males and 5 females), and WT sham (7 males and 5 females) –were used as subjects. Visual evoked potentials (VEP) were recorded in the left and right primary visual cortices and optomotor response were assessed in all mice at 14, 30, and 80 days after ONC. GFAP and Iba-1 were used as markers for astrocytes and microglial cells respectively at 7 days after ONC, along with NF-kB to measure inflammatory effects downstream of TRIF activation; RMPBS marker was used to visualize RGC survival and GAP-43 was used as a marker of regenerating optic nerve axons at 30 days after ONC. Results:We found reduced inflammatory response in the retina at 7 days post-ONC, less RGC loss and greater axonal regeneration 30 days post-ONC, and better recovery of visual function 80 days post-ONC in TKO mice compared to WT mice. Conclusions:Our study showed that the TRIF pathway is involved in post-ONC inflammatory response and gliosis and that deletion of TRIF induces better RGC survival and regeneration and better functional recovery in mice. Our results suggest the TRIF pathway as a potential therapeutic target for reducing the inflammatory damage caused by nervous system injury.
Keywords: Optic nerve crush, neuroinflammation, nerve regeneration, TRIF, TLR-3, visual recovery of function, male and female mice
DOI: 10.3233/RNN-201019
Journal: Restorative Neurology and Neuroscience, vol. 38, no. 5, pp. 355-368, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl