Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Dusane, Shamali | Wang, Edward | Bhatt, Tanvi; *
Affiliations: Department of Physical Therapy, College of Applied Health Sciences, University of Illinois, Chicago, IL, USA
Correspondence: [*] Corresponding author: Tanvi Bhatt, PT, PhD, Department of Physical Therapy, 1919, W Taylor St, M/C 898, University of Illinois at Chicago, Chicago, IL 60612, USA. Tel.: +1 312 355 4443; Fax: +1 312 996 4583; E-mail: tbhatt6@uic.edu.
Abstract: Background:Chronic stroke survivors demonstrate the potential to acquire reactive adaptations to external perturbations. However, such adaptations in postural stability and compensatory stepping responses are perturbation-type specific and the ability to generalize such adaptation to an opposing perturbation has not been studied. Objective:The study aimed to examine whether improved reactive balance control acquired through prior slip-perturbation training would positively transfer to, or interfere with, the reactive response to an unexpected novel trip. Methods:Twenty-six chronic stroke survivors were assigned to either the training group (TR) who received treadmill-induced slips (12 m/s2) while standing followed by a novel trip (16.8 m/s2) or the control group (TC) who experienced a single unannounced trip. The primary outcome measure was postural stability (examined by relative center of mass position (RCoMP) and velocity (RCoMV)) with step length and trunk angle being secondary measures. Perturbation outcome (fall vs recovery) and number of compensatory steps were also recorded. Results:The TR group showed an anterior shift in RCoMP via longer compensatory backward step and reduced number of steps from first to last slip-perturbation (p < 0.05). Post-slip adaptation, the TR group exhibited a more posterior RCoMP on the novel trip along with a longer forward step and decreased trunk flexion compared to the TC group (p < 0.05). Conclusions:Chronic stroke survivors demonstrated improved direction-specific compensatory stepping response on a novel trip-perturbation following reactive adaptation to large-magnitude, stance-slip perturbation training.The present study investigates the ability of chronic stroke survivors to generalize motor adaptation from stance-slip perturbation training to a novel, diametrically opposing trip-perturbation. We report that people with chronic hemi-paretic stroke could execute the acquired adaptation in reactive postural stability to improve reactive stepping responses to a novel stance-trip perturbation via generation of a direction-specific effective compensatory stepping response, such that the training group demonstrated a longer forward compensatory step and better control of postural stability than the control group.
Keywords: Perturbation training, adaptation, generalization, stroke
DOI: 10.3233/RNN-190924
Journal: Restorative Neurology and Neuroscience, vol. 37, no. 5, pp. 469-482, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl