Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kesar, Trisha M.a; * | Stinear, James W.b | Wolf, Steven L.a; c
Affiliations: [a] Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, GA, USA | [b] Exercise Sciences, The University of Auckland, Auckland, New Zealand | [c] Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affair Medical Center, Decatur, GA, USA
Correspondence: [*] Corresponding author: Trisha Kesar, 1441 Clifton Rd NE, Emory Rehabilitation Hospital, Atlanta, Georgia 30322, USA. E-mail: tkesar@emory.edu.
Abstract: Neuroplasticity is a fundamental yet relatively unexplored process that can impact rehabilitation of lower extremity (LE) movements. Transcranial magnetic stimulation (TMS) has gained widespread application as a non-invasive brain stimulation technique for evaluating neuroplasticity of the corticospinal pathway. However, a majority of TMS studies have been performed on hand muscles, with a paucity of TMS investigations focused on LE muscles. This perspective review paper proposes that there are unique methodological challenges associated with using TMS to evaluate corticospinal excitability of lower limb muscles. The challenges include: (1) the deeper location of the LE motor homunculus; (2) difficulty with targeting individual LE muscles during TMS; and (3) differences in corticospinal circuity controlling upper and lower limb muscles. We encourage future investigations that modify traditional methodological approaches to help address these challenges. Systematic TMS investigations are needed to determine the extent of overlap in corticomotor maps for different LE muscles. A simple, yet informative methodological solution involves simultaneous recordings from multiple LE muscles, which will provide the added benefit of observing how other relevant muscles co-vary in their responses during targeted TMS assessment directed toward a specific muscle. Furthermore, conventionally used TMS methods (e.g., determination of hot spot location and motor threshold) may need to be modified for TMS studies involving LE muscles. Additional investigations are necessary to determine the influence of testing posture as well as activation state of adjacent and distant LE muscles on TMS-elicited responses. An understanding of these challenges and solutions specific to LE TMS will improve the ability of neurorehabilitation clinicians to interpret TMS literature, and forge novel future directions for neuroscience research focused on elucidating neuroplasticity processes underlying locomotion and gait training.
Keywords: Neuroplasticity, non-invasive brain stimulation, leg muscles, homunculus, motor cortex, gait, posture
DOI: 10.3233/RNN-170801
Journal: Restorative Neurology and Neuroscience, vol. 36, no. 3, pp. 333-348, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl