Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Regulators of Peripheral Nerve Regeneration
Article type: Research Article
Authors: Ingoglia, N.A. | Chakraborty, G. | Yu, M. | Luo, D. | Liu, C.
Affiliations: Departments of Physiology and Neuroscience, UMD-New Jersey Medical School, Newark, NJ, 07103-2757 (U.S.A.)
Note: [] Correspondence: N.A. Ingoglia, Department of Physiology, New Jersey Medical School, Newark, NJ, 07103-2757, U.S.A.
Abstract: Both axonal and glial components of nerve are capable of carrying out reactions in which Arg, Lys, Leu, Pro, Val, AJa and Ser can be covalently linked to endogenous proteins in reactions which require tRNA but occur in the absence of ribosomes and ribosomal RNA. These posttranslational protein modifications appear to play important roles in nerve regeneration since they are increased more than 10-fold within 2 h of a crush injury in nerves which are capable of regeneration, but are not activated in nerves not capable of regrowth following injury. The regulation of the modification of proteins by Arg and Lys in vivo appears to be the function of separate peptides. The exogenous application of serine protease inhibitors (but not other protease inhibitors) mimics the effect of the endogenous peptides, suggesting that the endogenous regulators have serine protease inhibitory activity. The targets for modification are proteins of low abundance and thus far have been identified only in terms of their molecular weights and isoelectric points. The site of addition of Arg, but not the other amino acids, to target proteins is to the amino terminus. The addition of Arg to an amino terminus is likely to be involved in the ubiquitin mediated proteolysis of the modified protein. One of the most unusual findings in these series of experiments is that in regenerating sciatic nerves, amino acid modified proteins aggregate to form complexes of greater than 2 × 106 Da. The significance of this finding is not known. But we speculate that the aggregate may result from the assembly of an insoluble functional unit of the cell from soluble precursor proteins, and that the trigger for their assembly is amino acid modification.
Keywords: Posttranslational modification, Amino acid, Sciatic nerve, Regeneration, tRNA
DOI: 10.3233/RNN-1990-13411
Journal: Restorative Neurology and Neuroscience, vol. 1, no. 3-4, pp. 245-252, 1990
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl