Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kaur, Manpreet* | Grewal, Inderjit Singh | Sidhu, Sukhjinder Singh
Affiliations: Department of Mathematics, Statistics and Physics, Punjab Agricultural University, Ludhiana, Punjab, India
Correspondence: [*] Corresponding author: Manpreet Kaur, Department of Mathematics, Statistics and Physics, Punjab Agricultural University, Ludhiana, Punjab, India. E-mail: manpreetk4651@gmail.com.
Abstract: Getting correct answers to sensitive questions from the respondents and estimating the population parameters on variables that are sensitive in nature is prevailing problem in survey sampling. In the present research paper, the problem of estimation of the population proportion of sensitive characteristics has been studied. For this, an improved randomized response device has been developed by taking the two cases of the unrelated question, case-I: ‘when the proportion of unrelated characteristic is known’ and other case-II: ‘when the proportion of unrelated characteristic is not known’. Two estimators of the population proportion of a sensitive characteristic have been proposed, one for a known value of unrelated characteristic πy and the other for an unknown value, which were found to be unbiased. The expression for variances and unbiased estimates for the variances of the proposed estimators have been obtained. The optimum value of sample sizes has been worked out for which the minimum variance for the proposed estimators has also been obtained. An empirical study has been conducted and concluded graphically that proposed estimators are better than the estimators of Mangat (1992) and Tiwari and Mehta (2016).
Keywords: Randomized response technique, unbiased estimator, variance, relative efficiency
DOI: 10.3233/MAS-220012
Journal: Model Assisted Statistics and Applications, vol. 17, no. 2, pp. 87-97, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl