Correspondence:
[*]
Corresponding author: Minneapolis, Minnesota, USA. E-mail: stan.lipovetsky@gmail.com
Abstract: The work presents various techniques of the logistic and multinomial-logit modeling with their modifications. These methods are useful for regression modeling with a binary or categorical outcome, structuring in regression and clustering, singular value decomposition and principal component analysis with positive loadings, and numerous other applications. Particularly, these models are employed in the discrete choice modeling and the best-worst scaling known in applied psychology and socio-economics studies.