Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kadhem, Safaa K.
Affiliations: Department of Mathematics and Computer Applications, College of Science, Al Muthanna University | E-mail: safaakadhem@mu.edu.iq
Correspondence: [*] Corresponding author: Department of Mathematics and Computer Applications, College of Science, Al Muthanna University. E-mail: safaakadhem@mu.edu.iq.
Abstract: This article aims at identifying the high risk provinces in Iraq using a finite Poisson mixture. Through this methodology, the levels of relative risk is determined through identifying the number of components. In this article we do not investigate spatial correlation among regions and assume that the levels of risk observed in different regions are independent each other. The estimation of the model parameters and the model selection are performed using the Bayesian approach which allow to allocate each province to an identified risk level. We consider the data of the Coronavirus disease (COVID-19) infections in 18 provinces in Iraq and determining the levels of relative risks of this pandemic. The results are spatially shown in map which illustrates that the best Bayesian model fitted the data is 3 components model (high, medium and low risk).
Keywords: MCMC, relative risk mapping, mixture model, COVID-19
DOI: 10.3233/MAS-210516
Journal: Model Assisted Statistics and Applications, vol. 16, no. 1, pp. 65-72, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl