Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Pak, Ro Jin
Affiliations: Department of Information and Statistics, Dankook University, Yongin, Korea | E-mail: rjpak@dankook.ac.kr
Correspondence: [*] Corresponding author: Department of Information and Statistics, Dankook University, Yongin, Korea. E-mail: rjpak@dankook.ac.kr.
Abstract: This study attempts to explore the influence of observations in a time series or a discrete time signal. The goal is to detect abnormal observations from a frequency domain point of view, while the most of relevant studies have been done from a time domain point of view. The concept of the influence function in the field of robust statistics is borrowed to identify influential observations in a time series. An empirical version of the influence function on the discrete Fourier transform of a time series is designed and subsequently a statistic is proposed to identify influential observations of a time series from the frequency domain point of view. Though the proposed statistic is simple enough to be calculated with simple arithmetic operations, case studies show that the proposed method is capable of identifying influential or abnormal observations of a time series. By identifying influential or abnormal observations, we would be able to gain a better understanding of the nature of a time series and to control possible future influential observations.
Keywords: Discrete Fourier transform, influence function, robust statistics, signal processing, statistical estimation, time series
DOI: 10.3233/MAS-201353
Journal: Model Assisted Statistics and Applications, vol. 17, no. 3, pp. 149-154, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl