Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Touhami, Hannab | Almi, Kenzaa; b | Lakel, Saida; b; *
Affiliations: [a] Laboratory of Physical Materials, University of Laghouat, Laghouat, Algeria | [b] Laboratory of Metallic and Semiconducting Materials, University of Biskra, Biskra, Algeria
Correspondence: [*] Corresponding author: Said Lakel, Laboratory of Metallic and Semiconducting Materials, University of Biskra, Algeria. E-mail: said.lakel@yahoo.fr.
Abstract: Pure and 6% alkali-doped NiO thin films (alkali A = Li, Na, K) were prepared by a sol-gel spin coating method and deposited on glass substrates. XRD analysis showed that the prepared films belonged to a cubic structure with (111) plane as preferential growth orientation for undoped and K-doped samples and (200) for Li and Na doping. An optical study based on (UV-Visible) showed that the band gap tends to decrease with alkali doping and achieves a minimal value with Na doping. The Urbach energy increases systematically with the decrease of the optical band gap. The resistivity measurements showed that alkali doping led to a significant decrease in the resistivity value. The lowest value was achieved for the 6% Na-doped sample. Structural, optical and elastic properties of pure and 6% A-doped NiO were performed using the first principal method based on density functional theory. The optimization of the geometry of the studied samples revealed that the lattice parameters changed after doping. The band structure and density of states calculations showed that undoped and alkali doped samples exhibited an indirect band gap and the doped samples had comparatively narrower band gaps. The elastic constants Cij, Bulk modulus B, Shear modulus G, Young modulus, and Poison ratio of doped and alkali-doped NiO were further investigated.
Keywords: Alkali doped NiO, Spin coating, DFT, electrical properties, Gap energy, Elastic properties
DOI: 10.3233/MGC-220130
Journal: Main Group Chemistry, vol. 23, no. 1, pp. 73-88, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl