Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zin, May Thant*
Affiliations: Department of Chemical Engineering, Gokongwei College of Engineering, De La Salle University, Manila, Philippines
Correspondence: [*] Corresponding author: May Thant Zin, Department of Chemical Engineering, Gokongwei College of Engineering, De La Salle University, 2401 Taft Avenue, Manila, Philippines. E-mail: mtz.cmu@gmail.com.
Abstract: Dichlorodiphenyltrichloroethane (DDT), one of the persistant organic pollutants, was degraded by using nano-size zero valent iron (NZVI) and NZVI with Cu. The Box Behnken Design of Experiments was used to determine the effects of four factors: namely, initial DDT concentration (Co), metal loading, % Cu (M), and pH of test solution, on the degradation of DDT. Experiments were conducted at room temperature. The response was expressed as mg DDT degraded per g of metal particles. Among four factors, the metal loading and initial DDT concentration were the most significant. Increasing the initial DDT concentration increased the amount of DDT degraded per unit amount of metal particles. According to the effect of metal loading, only a small amount of metal particles is necessary to effect DDT degradation. The degradation of DDT was different with NZVI alone and bimetallic NZVI/Cu. However, only the addition of Cu up to 5% of the total metal loading improved DDT degradation significantly. DDT degradation was the most favorable at pH 3 and the least was pH 2. The mg DDT degraded per g metal particles could be modeled by the equation R = 7.60 + 2.63Co –4.2M + 1.21pH. The optimum DDT degradation condition was also observed.
Keywords: DDT, water treatment, nanoparticles, iron, copper
DOI: 10.3233/MGC-150192
Journal: Main Group Chemistry, vol. 15, no. 2, pp. 131-138, 2016
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl