Applications of SAT Solvers in Cryptanalysis: Finding Weak Keys and Preimages
Abstract
This paper investigates the power of SAT solvers in cryptanalysis. The contributions are two-fold and are relevant to both theory and practice. First, we introduce an efficient, generic and automated method for generating SAT instances encoding a wide range of cryptographic computations. This method can be used to automate the first step of algebraic attacks, i.e. the generation of a system of algebraic equations. Second, we illustrate the limits of SAT solvers when attacking cryptographic algorithms, with the aim of finding weak keys in block ciphers and preimages in hash functions. SAT solvers allowed us to find, or prove the absence of, weak-key classes under both differential and linear attacks of full-round block ciphers based on the International Data Encryption Algorithm (IDEA), namely, WIDEA-n for