Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhang, Dua | Wu, Binb; * | Xi, Daomingb | Chen, Ruic | Xiao, Penga; b; d | Xie, Qingguoa; b; d; *
Affiliations: [a] Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China | [b] Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China | [c] The Raymeasure Medical Technology Co., Ltd., Suzhou, China | [d] Wuhan National Laboratory for Optoelectronics, Wuhan, China
Correspondence: [*] Corresponding authors: Bin Wu E-mail: qgxie@ustc.edu.cn; Qingguo Xie E-mail: wubin@iai.ustc.edu.cn.
Abstract: BACKGROUND:The development of photon-counting CT systems has focused on semiconductor detectors like cadmium zinc telluride (CZT) and cadmium telluride (CdTe). However, these detectors face high costs and charge-sharing issues, distorting the energy spectrum. Indirect detection using Yttrium Orthosilicate (YSO) scintillators with silicon photomultiplier (SiPM) offers a cost-effective alternative with high detection efficiency, low dark count rate, and high sensor gain. OBJECTIVE:This work aims to demonstrate the feasibility of the YSO/SiPM detector (DexScanner L103) based on the Multi-Voltage Threshold (MVT) sampling method as a photon-counting CT detector by evaluating the synthesis error of virtual monochromatic images. METHODS:In this study, we developed a proof-of-concept benchtop photon-counting CT system, and employed a direct method for empirical virtual monochromatic image synthesis (EVMIS) by polynomial fitting under the principle of least square deviation without X-ray spectral information. The accuracy of the empirical energy calibration techniques was evaluated by comparing the reconstructed and actual attenuation coefficients of calibration and test materials using mean relative error (MRE) and mean square error (MSE). RESULTS:In dual-material imaging experiments, the overall average synthesis error for three monoenergetic images of distinct materials is 2.53% ±2.43%. Similarly, in K-edge imaging experiments encompassing four materials, the overall average synthesis error for three monoenergetic images is 4.04% ±2.63%. In rat biological soft-tissue imaging experiments, we further predicted the densities of various rat tissues as follows: bone density is 1.41±0.07 g/cm3, adipose tissue density is 0.91±0.06 g/cm3, heart tissue density is 1.09±0.04 g/cm3, and lung tissue density is 0.32±0.07 g/cm3. Those results showed that the reconstructed virtual monochromatic images had good conformance for each material. CONCLUSION:This study indicates the SiPM-based photon-counting detector could be used for monochromatic image synthesis and is a promising method for developing spectral computed tomography systems.
Keywords: Multi-voltage threshold, photon-counting CT, virtual monochromatic image
DOI: 10.3233/XST-240039
Journal: Journal of X-Ray Science and Technology, vol. Pre-press, no. Pre-press, pp. 1-21, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl