Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Medical Applications of X-ray Imaging Techniques
Article type: Research Article
Authors: Musleh, Abdullaha; *
Affiliations: [a] Department of Surgery, King Khalid University, Abha, Saudi Arabia
Correspondence: [*] Corresponding author: Abdullah Musleh, MD, Department of Surgery, King Khalid University, Abha 62529, Saudi Arabia. E-mail: amusleh@kku.edu.sa.
Abstract: In the medical field, diagnostic tools that make use of deep neural networks have reached a level of performance never before seen. A proper diagnosis of a patient’s condition is crucial in modern medicine since it determines whether or not the patient will receive the care they need. Data from a sinus CT scan is uploaded to a computer and displayed on a high-definition monitor to give the surgeon a clear anatomical orientation before endoscopic sinus surgery. In this study, a unique method is presented for detecting and diagnosing paranasal sinus disorders using machine learning. The researchers behind the current study designed their own approach. To speed up diagnosis, one of the primary goals of our study is to create an algorithm that can accurately evaluate the paranasal sinuses in CT scans. The proposed technology makes it feasible to automatically cut down on the number of CT scan images that require investigators to manually search through them all. In addition, the approach offers an automatic segmentation that may be used to locate the paranasal sinus region and crop it accordingly. As a result, the suggested method dramatically reduces the amount of data that is necessary during the training phase. As a result, this results in an increase in the efficiency of the computer while retaining a high degree of performance accuracy. The suggested method not only successfully identifies sinus irregularities but also automatically executes the necessary segmentation without requiring any manual cropping. This eliminates the need for time-consuming and error-prone human labor. When tested with actual CT scans, the method in question was discovered to have an accuracy of 95.16 percent while retaining a sensitivity of 99.14 percent throughout.
Keywords: Paranasal sinuses, endoscopic sinus surgery, accuracy, rmse, sensitivity, sinus irregularities, segmentation, and machine learning
DOI: 10.3233/XST-230284
Journal: Journal of X-Ray Science and Technology, vol. 32, no. 3, pp. 839-855, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl