Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Sangeetha Francelin Vinnarasi, F. | Daniel, Jesline | Anita Rose, J.T. | Pugalenthi, R.; *
Affiliations: St. Joseph’s College of Engineering, OMR, Chennai, India
Correspondence: [*] Corresponding author: R. Pugalenthi, Associate Professor, St. Joseph’s College of Engineering, OMR, Chennai−600119, India. E-mail: rpugalsir@gmail.com.
Abstract: Multi-modal image fusion techniques aid the medical experts in better disease diagnosis by providing adequate complementary information from multi-modal medical images. These techniques enhance the effectiveness of medical disorder analysis and classification of results. This study aims at proposing a novel technique using deep learning for the fusion of multi-modal medical images. The modified 2D Adaptive Bilateral Filters (M-2D-ABF) algorithm is used in the image pre-processing for filtering various types of noises. The contrast and brightness are improved by applying the proposed Energy-based CLAHE algorithm in order to preserve the high energy regions of the multimodal images. Images from two different modalities are first registered using mutual information and then registered images are fused to form a single image. In the proposed fusion scheme, images are fused using Siamese Neural Network and Entropy (SNNE)-based image fusion algorithm. Particularly, the medical images are fused by using Siamese convolutional neural network structure and the entropy of the images. Fusion is done on the basis of score of the SoftMax layer and the entropy of the image. The fused image is segmented using Fast Fuzzy C Means Clustering Algorithm (FFCMC) and Otsu Thresholding. Finally, various features are extracted from the segmented regions. Using the extracted features, classification is done using Logistic Regression classifier. Evaluation is performed using publicly available benchmark dataset. Experimental results using various pairs of multi-modal medical images reveal that the proposed multi-modal image fusion and classification techniques compete the existing state-of-the-art techniques reported in the literature.
Keywords: Image fusion, ABF, DCNN, CT, MRI, multi-modal
DOI: 10.3233/XST-210851
Journal: Journal of X-Ray Science and Technology, vol. 29, no. 3, pp. 411-434, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl