Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: He, Yangsua; b; 1 | Qin, Wenjiana; 1 | Wu, Yina; 1 | Zhang, Mengxic | Yang, Yongfenga | Liu, Xina | Zheng, Haironga | Liang, Donga; * | Hu, Zhanlia; *
Affiliations: [a] Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China | [b] School of Electrical and Information Engineering, Hunan University, Changsha, China | [c] Department of Biomedical Engineering, University of California, Davis, CA, USA
Correspondence: [*] Dong Liang and Zhanli Hu, Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. E-mail: dong.liang@siat.ac.cn (Dong Liang) and E-mail: zl.hu@siat.ac.cn (Zhanli Hu).
Note: [1] These authors contributed equally.
Abstract: PURPOSE:Segmentation of magnetic resonance images (MRI) of the left ventricle (LV) plays a key role in quantifying the volumetric functions of the heart, such as the area, volume, and ejection fraction. Traditionally, LV segmentation is performed manually by experienced experts, which is both time-consuming and prone to subjective bias. This study aims to develop a novel capsule-based automated segmentation method to automatically segment the LV from images obtained by cardiac MRI. METHOD:The technique applied for segmentation uses Fourier analysis and the circular Hough transform (CHT) to indicate the approximate location of the LV and a network capsule to precisely segment the LV. The neurons of the capsule network output a vector and preserve much of the information about the input by replacing the largest pooling layer with convolutional strides and dynamic routing. Finally, the segmentation result is postprocessed by threshold segmentation and morphological processing to increase the accuracy of LV segmentation. RESULTS:We fully exploit the capsule network to achieve the segmentation goal and combine LV detection and capsule concepts to complete LV segmentation. In the experiments, the tested methods achieved LV Dice scores of 0.922±0.05 end-diastolic (ED) and 0.898±0.11 end-systolic (ES) on the ACDC 2017 data set. The experimental results confirm that the algorithm can effectively perform LV segmentation from a cardiac magnetic resonance image. To verify the performance of the proposed method, visual and quantitative comparisons are also performed, which show that the proposed method exhibits improved segmentation accuracy compared with the traditional method. CONCLUSIONS:The evaluation metrics of medical image segmentation indicate that the proposed method in combination with postprocessing and feature detection effectively improves segmentation accuracy for cardiac MRI. To the best of our knowledge, this study is the first to use a deep learning model based on capsule networks to systematically evaluate end-to-end LV segmentation.
Keywords: Deep learning, cardiac magnetic resonance imaging (CMRI), capsule network, LV segmentation
DOI: 10.3233/XST-190621
Journal: Journal of X-Ray Science and Technology, vol. 28, no. 3, pp. 541-553, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl