Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: El_Tokhy, Mohamed S.; * | Mahmoud, Imbaby I.
Affiliations: Engineering Department, NRC, Atomic Energy Authority, Inshas, Egypt
Correspondence: [*] Corresponding author: Mohamed S. El_Tokhy, Engineering Department, NRC, Atomic Energy Authority, P. No. 13759, Inshas, Egypt. Tel.: +201068395079; E-mail: engtokhy@gmail.com.
Abstract: Influence of x-ray pulse generated from gamma spectrometers should be eliminated in applications, which typically uses pulse shape techniques between gamma and x-ray pulses. In this study, we proposed and tested several algorithms aiming to eliminate this influence. The algorithms are based on curve fitting (CF), artificial neural network (ANN), system identification, peak shape, amplitude search with curve fitting and pulse tracking methods. Gamma pulses and X-ray pulses are detected by NaI(TI) scintillator detector and Silicon lithium Si(Li) detector, respectively. The developed algorithms are tested using 32,000 total instantaneous detector events of acquired gamma pulses and 65,536 total instantaneous detector events of x-ray source. An algorithm using the least square curve fitting method is applied for differentiation between gamma and x-ray pulses. ANN is employed as a classifier for identification of extracted spectrum and Bispectrum features of gamma and x-ray pulses. A comparison between identification results due to extracted spectrum and Bispectrum features is established. System identification algorithm is then built to determine the detection system response of each radiation pulse, which includes various models to attain best fitting. These models are Auto-regressive model with external input (ARX), the linear parametric model (IV) and process models (P1D). The peak shape algorithm is also tried, which depends on the individual classification of pulse width. The amplitude search with curve fitting algorithm is implemented. Moreover, the pulse tracking algorithm is investigated for PSD between gamma and x-ray pulses. The maximum peak of contaminated pulse is tracked using a suggested peak search method. Then, pulse position is estimated using matrix method. Comparison between these algorithms is conducted based on the evaluation of light of residuals, fitting error and processing time. The results confirm that peak shape algorithm is the best one from computational speed point of view, while ANN algorithm using Bispectrum feature extraction method is the most appropriate one that yields 100% accuracy over noisy environment with longer processing time. In addition, the system identification algorithm is the optimal algorithm that achieves zero fitting error under clean environment. These proposed algorithms for PSD between gamma and x-ray pulses lead to design efficient spectrometers with optimal applicability in various environments.
Keywords: Spectrometers, medical imaging, FPGA, digital signal processing
DOI: 10.3233/XST-180406
Journal: Journal of X-Ray Science and Technology, vol. 26, no. 6, pp. 931-955, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl