Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ali, Imada; * | Alsbou, Nesreenb | Taguenang, Jean-Michelc | Ahmad, Salahuddina
Affiliations: [a] Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA | [b] Department of Engineering and Physics, University of Central Oklahoma, University Drive, Edmond, OK, USA | [c] Banner Health System, Chandler, AZ, USA
Correspondence: [*] Corresponding author: Imad Ali, Ph.D., DABR, Associate Professor, Medical Physics, Department of Radiation Oncology, Stephenson Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, 800 N.E. 10th Street, OKCC L100, Oklahoma City, OK 73104, USA. Tel.: +1 405 271 8290; Fax: +1 405 271 8297; E-mail: iali@ouhsc.edu.
Abstract: The objective of this study is to quantitatively evaluate variations of dose distributions deposited in mobile target by measurement and modeling. The effects of variation in dose distribution induced by motion on tumor dose coverage and sparing of normal tissues were investigated quantitatively. The dose distributions with motion artifacts were modeled considering different motion patterns that include (a) motion with constant speed and (b) sinusoidal motion. The model predictions of the dose distributions with motion artifacts were verified with measurement where the dose distributions from various plans that included three-dimensional conformal and intensity-modulated fields were measured with a multiple-diode-array detector (MapCheck2), which was mounted on a mobile platform that moves with adjustable motion parameters. For each plan, the dose distributions were then measured with MapCHECK2 using different motion amplitudes from 0–25 mm. In addition, mathematical modeling was developed to predict the variations in the dose distributions and their dependence on the motion parameters that included amplitude, frequency and phase for sinusoidal motions. The dose distributions varied with motion and depended on the motion pattern particularly the sinusoidal motion, which spread out along the direction of motion. Study results showed that in the dose region between isocenter and the 50% isodose line, the dose profile decreased with increase of the motion amplitude. As the range of motion became larger than the field length along the direction of motion, the dose profiles changes overall including the central axis dose and 50% isodose line. If the total dose was delivered over a time much longer than the periodic time of motion, variations in motion frequency and phase do not affect the dose profiles. As a result, the motion dose modeling developed in this study provided quantitative characterization of variation in the dose distributions induced by motion, which can be employed in radiation therapy to quantitatively determine the margins needed for treatment planning considering dose spillage to normal tissue.
Keywords: Motion dose model, motion artifacts, respiratory motion, spread-out, dose distribution
DOI: 10.3233/XST-16223
Journal: Journal of X-Ray Science and Technology, vol. 25, no. 4, pp. 573-583, 2017
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl