Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Abliz, Erkinay | Collins, Joshua E. | Bell, Howard | Tata, Darrell B.
Affiliations: Department of Electrical and Computer Engineering, George Washington University, Washington, DC, USA | Intelligent Materials, Inc., Princeton, NJ, USA | U.S. Food and Drug Administration, Silver Spring, MD, USA
Note: [] Corresponding author: Erkinay Abliz, U.S. Food and Drug Administration, White Oak campus, Silver Spring, MD, USA. E-mail: Darayash.Tata@fda.hhs.gov
Abstract: Introduction: In this communication we report on a novel non-invasive methodology in utilizing "soft" energy diagnostic X-rays to indirectly activate a photo-agent utilized in photodynamic therapy (PDT): Photofrin II (Photo II) through X-ray induced luminescence from Gadolinium Oxysulfide (20 micron dimension) particles doped with Terbium: Gd_{2}O_{2}S:Tb. Photodynamic agents such as Photo II utilized in PDT possess a remarkable property to become preferentially retained within the tumor's micro-environment. Upon the photo-agent's activation through (visible light) photon absorption, the agents exert their cellular cytotoxicity through type I and type II pathways through extensive generation of reactive oxygen species (ROS); namely, singlet oxygen ^{1}O_{2}, superoxide anion O_{2}^{-}, and hydrogen peroxide H_{2}O_{2}, within the intra-tumoral environment. Unfortunately, due to shallow visible light penetration depth (∼ 2 mm to 5 mm) in tissues, the current PDT strategy has largely been restricted to the treatment of surface tumors, such as the melanomas. Additional invasive strategies through optical fibers are currently utilized in getting the visible light into the intended deep seated targets within the body for PDT. Methods: X-ray induced visible luminescence from Gd_{2}O_{2}S:Tb particles were spectroscopically characterized, and the potential in-vitro cellular cytotoxicity of Gd_{2}O_{2}S:Tb particles on human glioblastoma cells (due to 48 Hrs Gd_{2}O_{2}S:Tb particle exposure) was screened through the MTS cellular metabolic assay. In-vitro human glioblastoma cellular exposures in presence of Photo II with Gd_{2}O_{2}S:Tb particles were performed in the dark in sterile 96 well tissue culture plates, and the corresponding changes in the metabolic activities of the glioblastoma due to 15 minutes of (diagnostic energy) X-ray exposure was determined 48 Hrs after treatment through the MTS assay. Results: Severe suppression (> 90% relative to controls) in the cellular metabolic activity of human glioblastoma was measured due to the treatment of clinically relevant concentrations of 20 μg/ml Photo II, with Gd_{2}O_{2}S:Tb particles, and (120 kVp) diagnostic X-rays. Taken together, the in-vitro findings herein provide the basis for future studies in determining the safety and efficacy of this non-invasive X-ray induced luminescence strategy in activating photo-agent in deep seated tumors.
Keywords: X-ray induced luminescence, photodynamic therapy, reactive oxygen species detection, singlet oxygen, Photofrin II, Gadolinium Oxysulfide particles
DOI: 10.3233/XST-2011-0311
Journal: Journal of X-Ray Science and Technology, vol. 19, no. 4, pp. 521-530, 2011
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl