Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Prince, Martin R. | Zhang, Hong Lei | Chabra, Shalini G. | Jacobs, Paula | Wang, Yi
Affiliations: Department of Radiology, Weill Medical College of Cornell University, New York, NY 10022, USA | Advanced Magnetics, Inc., Cambridge, MA, USA
Note: [] Corresponding author: Martin R. Prince, 416 East 55th Street, New York, NY 10022, USA. Tel.: +1 212 746 6801; Fax: +1 212 752 8908; E-mail: map2008@med.cornell.edu
Abstract: Purpose: To evaluate the imaging potential of ferumoxytol, a new superparamagnetic iron oxide colloidal blood pool contrast agent. Materials and Methods: Magnetic resonance (MR) imaging at 1.5 Tesla was performed before and after intravenous injection of ferumoxytol using escalating doses of 0.4, 0.8, 1.2 and 1.6 mg Fe/kg for a total of 4 mg Fe/kg in five subjects imaged with 3D MR Angiography (MRA) of the trifurcation after each dose. In five subjects cardiac cine MRI was performed pre and post 4.0 mg Fe/kg. Image quality was assessed by measuring signal to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in the vascular structures. Pre- and post-dose urine and blood tests as well as EKG/vital sign monitoring were performed to evaluate safety and blood samples were collected for T1 relaxivity measurements. Results: Cumulative doses of 0, 0.4, 1.2, 2.4 and 4 mg Fe/kg yielded mean SNR in the arteries of 10, 16, 39, 57 and 69 respectively indicating that the higher doses produced higher SNR on 3D vascular images. Similarly aorta SNR on 2D time-of-flight increased from 11.8 without Fe to 15.4 post Fe (p = 0.004) indicating improved image quality on MRA sequences optimized for use without contrast. At 4 mg Fe/kg there was a substantial T1 shortening measured in the blood from 1990 ± 573 ms to 80 ± 42 ms (p < 0.0001), corresponding to the increased SNR. Images of large vascular structures including cardiac chambers, aorta, and pulmonary arteries were excellent post ferumoxytol but images of smaller arteries of the trifurcation were difficult to evaluate due to enhancement of the overlapping veins. No serious adverse events occurred. Conclusion: The new superparamagnetic iron oxide colloid ferumoxytol is a promising blood pool agent especially for cardiac, aorta and pulmonary imaging.
Keywords: magnetic resonance angiography, contrast media, iron oxide, cardiac imaging, aorta
Journal: Journal of X-Ray Science and Technology, vol. 11, no. 4, pp. 231-240, 2003
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl