Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Review Article
Authors: Lackner, James R.; * | DiZio, Paul
Affiliations: Ashton Graybiel Spatial Orientation Laboratory, Brandeis University, Waltham, Massachusetts
Note: [*] Reprint address: James R. Lackner, Ashton Graybiel Spatial Orientation Laboratory, Brandeis University, Waltham MA 02254-9110. Tel: (617) 736-2033; Fax: (617) 736-2031; E-mail: lackner@binah.cc.brandeis.edu.
Abstract: The reafference model has frequently been used to explain spatial constancy during eye and head movements. We have found that its basic concepts also form part of the information processing necessary for the control and recalibration of reaching movements. Reaching was studied in a novel force environment–a rotating room that creates centripetal forces of the type that could someday substitute for gravity in space flight, and Coriolis forces which are side effects of rotation. We found that inertial, noncontacting Coriolis forces deviate the path and endpoint of reaching movements, a finding that shows the inadequacy of equilibrium position models of movement control. Repeated movements in the rotating room quickly lead to normal movement patterns and to a failure to perceive the perturbing forces. The first movements made after rotation stops, without Coriolis forces present, show mirror-image deviations and evoke perception of a perturbing force even though none is present. These patterns of sensorimotor control and adaptation can largely be explained on the basis of comparisons of efference copy, reafferent muscle spindle, and cutaneous mechanoreceptor signals. We also describe experiments on human iocomotion using an apparatus similar to that which Mittelstaedt used to study the optomotor response of the Eristalis fly. These results show that the reafference principle relates as well to the perception of the forces acting on and exerted by the body during voluntary locomotion.
Keywords: reafference, Coriolis force, reaching, adaptation, force perception, motor control, artificial gravity
DOI: 10.3233/VES-1997-7403
Journal: Journal of Vestibular Research, vol. 7, no. 4, pp. 303-310, 1997
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl