Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Mursaleen, Leaha; b; c | Somavarapu, Satyanarayanab | Zariwala, Mohammed Gulreza; *
Affiliations: [a] School of Life Sciences, University of Westminster, London, UK | [b] Department of Pharmaceutics, UCL School of Pharmacy, London, UK | [c] The Cure Parkinson’s Trust, London, UK
Correspondence: [*] Correspondence to: Dr. M. Gulrez Zariwala, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK. Tel.: +44 20 7911 5000/Internal Ext: 65086; E-mail: zariwam@wmin.ac.uk.
Abstract: Background:Reduced glutathione and excess free iron within dopaminergic, substantia nigra neurons in Parkinson’s disease (PD) can drive accumulation of toxic hydroxyl radicals resulting in sustained oxidative stress and cellular damage. Factors such as brain penetrance and bioavailability have limited the advancement of potential antioxidant and iron chelator therapies for PD. Objective:This study aimed to develop novel nanocarrier delivery systems for the antioxidant curcumin and/or iron chelator deferoxamine (DFO) to protect against rotenone-induced changes in cell viability and oxidative stress in SH-SY5Y cells. Methods:Nanocarriers of curcumin and/or DFO were prepared using Pluronic F68 (P68) with or without dequilinium (DQA) by modified thin-film hydration. Cell viability was assessed using an MTT assay and oxidative stress was measured using thiobarbituric acid reactive substances and cellular antioxidant activity assays. Results:All formulations demonstrated high encapsulation efficiency (65–96%) and nanocarrier size was <200 nm. 3-h pretreatment with P68 or P68+DQA nanocarriers containing various concentrations of curcumin and/or DFO significantly protected against rotenone-reduced cell viability. The addition of DFO to curcumin-loaded P68+DQA nanocarriers resulted in increased protection by at least 10%. All nanoformulations significantly protected against rotenone-induced lipid peroxidation (p < 0.0001). The addition of DQA, which targets mitochondria, resulted in up to 65% increase in cellular antioxidant activity. In nearly all preparations, the combination of 10 μM curcumin and 100 μM DFO had the most antioxidant activity. Conclusion:This study demonstrates for the first time the formulation and delivery using P68 and P68+DQA curcumin and/or DFO nanocarriers to protect against oxidative stress induced by a rotenone PD model. This strategy to combine antioxidants with iron chelators may provide a novel approach to fully utilise their therapeutic benefit for PD.
Keywords: Parkinson’s disease, nanotechnology, curcumin, deferoxamine, oxidative stress
DOI: 10.3233/JPD-191754
Journal: Journal of Parkinson's Disease, vol. 10, no. 1, pp. 99-111, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl