Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Al Zaabi, A. | Rahmani, A.Y. | Souid, A.
Affiliations: Department of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates | Department of Pediatrics, United Arab Emirates University, College of Medicine and Health Sciences, Al Ain, United Arab Emirates
Note: [] Corresponding author: Dr. Aiman Y. Rahmani, Department of Pediatrics, Tawam Hospital, Al Ain, Abu Dhabi, United Arab Emirates. Tel.: +971 3 767 7435; E-mail: arahmani@tawamhospital.ae
Abstract: OBJECTIVES: Whole-body hypothermia (to 33.5 ± 0.5°C) is a therapeutic modality that reduces risks of death and neurodevelopmental disability in neonates subjected to hypoxic-ischemic insults. This in vitro study was designed to determine changes in neonatal cellular metabolism with temperature. Its main aim was to compare the metabolic rate at ≤33°C with that at ≥35°C. STUDY DESIGN: Foreskin specimens were used as a source of neonatal tissue. Cellular respiration (mitochondrial O2 consumption) was used as a surrogate biomarker for the metabolic rate. Foreskin specimens from healthy newborns were collected immediately after circumcision and processed within one hour for measuring the rate of O2 consumption at various temperatures (±0.5°C). O2 consumption was determined as function of time from the phosphorescence decay of Pd (II) meso-tetra-(4-sulfonatophenyl)-tetrabenzoporphyrin. RESULTS: In a vial sealed from air and containing foreskin specimen in phosphate-buffered saline supplemented with 5 mM glucose, [O2] decreased linearly with time, confirming its zero-order kinetics. The rate of O2 consumption (μM O2.min−1), thus, was the negative of the slope of [O2] vs. time. Cyanide inhibited O2 consumption, confirming the oxidation occurred in the respiratory chain. Cellular respiration at ≤33°C (n = 25) significantly differed from that at ≥35°C (n = 24), p < 0.001. The rate (μM O2.min−1.mg−1) at 25°C was 0.034 ± 0.006 (n = 11, p = 0.044), at 33°C was 0.029 ± 0.008 (n = 14, reference temperature), at 35°C was 0.062 ± 0.020 (2-fold higher, n = 18, p < 0.001), and at 37°C was 0.061 ± 0.009 (2-fold higher, n = 6, p < 0.001). CONCLUSIONS: Neonatal foreskin cellular respiration is highly sensitive to critical temperatures (33°C vs. 35°C).
Keywords: Cellular respiration, bioenergetics, metabolism, mitochondria, hypothermia, neonates
DOI: 10.3233/NPM-14814021
Journal: Journal of Neonatal-Perinatal Medicine, vol. 7, no. 3, pp. 179-183, 2014
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl