Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Orsenigo, Carlotta | Vercellis, Carlo
Affiliations: Department of Management, Economics and Industrial Engineering, Politecnico di Milano, Milan, Italy
Note: [] Corresponding author. Carlo Vercellis, Department of Management, Economics and Industrial Engineering, Politecnico di Milano, Via Lambruschini 4b, 20156 Milan, Italy. E-mail: carlo.vercellis@polimi.it.
Abstract: In the context of classification most efforts have been devoted to deriving accurate prediction models from a set of examples whose class is supposed to be known with certainty. However, there are situations where class labels are affected by an intrinsic vagueness, as in ranking customers for marketing campaigns or credit approval. In this paper we propose a new two-phase fuzzy classification method aimed at generating accurate classification rules when labels are uncertain. In the first phase, an ensemble method is applied in order to derive the value of the class membership function for each example in the dataset. In the second phase, an optimal classification model is obtained by solving a fuzzy variant of discrete support vector machines. Computational tests performed on benchmark and real world marketing and credit risk datasets show the effectiveness of the proposed method when it is compared to alternative classification techniques. Furthermore, the tests reveal that the new fuzzy discrete SVM model is a robust regularization method capable of generating stable classification rules, reducing the variance of the error and smoothing out the noise due to outliers.
Keywords: Data mining, fuzzy sets, support vector machines, marketing, credit risk
DOI: 10.3233/IFS-2012-0493
Journal: Journal of Intelligent & Fuzzy Systems, vol. 23, no. 4, pp. 101-110, 2012
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl