Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ren, Shujun | Wang, Yuanhong; *
Affiliations: Department of Computer Science and Technology, Shandong University of Science and Technology, Qingdao, China
Correspondence: [*] Corresponding author. Yuanhong Wang, Department of Computer Science and Technology, Shandong University of Science and Technology, Qingdao, China. E-mail: pengyanjuncn@163.com.
Abstract: Image segmentation is critical in medical image processing for lesion detection, localisation, and subsequent diagnosis. Currently, computer-aided diagnosis (CAD) has played a significant role in improving diagnostic efficiency and accuracy. The segmentation task is made more difficult by the hazy lesion boundaries and uneven forms. Because standard convolutional neural networks (CNNs) are incapable of capturing global contextual information, adequate segmentation results are impossible to achieve. We propose a multiscale feature fusion network (MTC-Net) in this paper that integrates deep separable convolution and self-attentive modules in the encoder to achieve better local continuity of images and feature maps. In the decoder, a multi-branch multi-scale feature fusion module (MSFB) is utilized to improve the network’s feature extraction capability, and it is integrated with a global cooperative aggregation module (GCAM) to learn more contextual information and adaptively fuse multi-scale features. To develop rich hierarchical representations of irregular forms, the suggested detail enhancement module (DEM) adaptively integrates local characteristics with their global dependencies. To validate the effectiveness of the proposed network, we conducted extensive experiments, evaluated on the public datasets of skin, breast, thyroid and gastrointestinal tract with ISIC2018, BUSI, TN3K and Kvasir-SEG. The comparison with the latest methods also verifies the superiority of our proposed MTC-Net in terms of accuracy. Our code on https://github.com/gih23/MTC-Net.
Keywords: Medical image segmentation, multi-scale features, detail enhancement, feature fusion, deep learning
DOI: 10.3233/JIFS-237963
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 4, pp. 8729-8740, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl