Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ma, Xiyina | Li, Jianb; *
Affiliations: [a] Shanghai Technical Institute of Electronics & Information, Shanghai, China | [b] Shanghai Institute of Technology, Shanghai, China
Correspondence: [*] Corresponding author. Jian Li, Shanghai Institute of Technology, Shanghai, 201400, China. E-mail: maoluanfanb42@163.com.
Abstract: In order to ensure the safety of life and property in large buildings, the design of emergency evacuation routes for large buildings based on cloud computing and GIS big data is studied. Combining cloud computing and GIS big data, a command model for emergency evacuation of large buildings is built. Emergency evacuation functions are realized through the access layer, business logic layer, cloud computing layer and data layer. GIS big data of large buildings is stored in the model data layer. GIS geographic data is clustered through the MapReduce based parallel K-means clustering algorithm in the cloud computing layer. After clustering, the emergency evacuation road network of large buildings is constructed through GIS in the business logic layer. On the road network, the emergency evacuation route selection method combining Dikstra algorithm and ant colony algorithm is used to realize the optimal route selection of emergency evacuation of large buildings. Experiments show that this method can effectively select the best evacuation path in large buildings, and the evacuation speed of the selected path is fast, which can ensure the safety of people in buildings.
Keywords: Cloud computing, GIS big data, large buildings, emergency evacuation route, K-means clustering, ant colony algorithm
DOI: 10.3233/JIFS-237834
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 4, pp. 9975-9986, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl