Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Hu, Yuanyuan; *
Affiliations: Department of Art Education and Teaching, Nanchang University, Nanchang, Jiangxi, China
Correspondence: [*] Corresponding author. Mrs. Yuanyuan Hu, Lecturer, Department of Art Education and Teaching, Nanchang University, Nanchang, Jiangxi, 330031, China. E-mail: sunny3232023@163.com.
Abstract: Music education has a rich historical background. Nevertheless, the introduction of modern teaching methods is relatively delayed. In recent years, there has been a remarkable acceleration in the advancement of music education. A promising tool that has emerged to revolutionize education as a whole is Virtual Reality (VR) technology, which offers immersive and interactive experiences across various disciplines. At the university level, integrating VR technology into music education opens up exciting opportunities to enhance practical teaching methods and provide students with enriched musical experiences. Virtual Reality together with Internet of Things (IoT) demonstrates its capabilities in various tasks, but its widespread availability in online learning remainders a pressing challenge that needs to be addressed. In pre-processing, it removes noise data using Dynamic Context-Sensitive Filtering (DCSF). VR technology creates an unparalleled learning environment, it transporting students to virtual concert halls, recording studios, or historical music venues. Hence the Multiscale deep bidirectional gated recurrent neural Network (MDBGNN) improves the practical teaching of music course concept, like Music theory, harmony, and rhythm can be visualized and experienced in VR. Finally, Dung Beetle Optimization Algorithm (DBOA) is employed to optimize the weight parameters of MDBGNN. The proposed MDBGNN-DBO-UMC-VRT is implemented in Python. The proposed method is analysed with the help of performance metrics, like precision, accuracy, F1-score, Recall (Sensitivity), Specificity, Error rate, Computation time and RoC. The proposed MDBGNN-DBO-UMC-VRT method attains 13.11%, 18.12% and 18.73% high specificity, 11.13%, 11.04% and 19.51% lower computation Time, 15.29%, 15.365% and 14.551% higher ROC and 13.65%, 15.98%, and 17.15% higher Accuracy compared with existing methods, such as Enhancing Vocal Music Teaching through the Fusion of Artificial Intelligence Algorithms and VR Technology (CNN-UMC-VRT), Exploring the Efficacy of VR Technology in Augmenting Music Art Teaching (BPNN-UMC-VRT) and Implementing an Interactive Music-Assisted Teaching System Using VR Technology (DNN-UMC-VRT) respectively.
Keywords: Dung Beetle optimization, Dynamic Context-Sensitive Filtering, multiscale deep bidirectional gated recurrent neural network, Virtual Reality, music course
DOI: 10.3233/JIFS-236893
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 4, pp. 9577-9590, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl