Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Peng, Jun long | Liu, Xiao; *
Affiliations: Changsha University of Science & Technology, Chang Sha City, China
Correspondence: [*] Corresponding author. Jun long Peng. E-mail: nanmenggong@163.com and Xiao Liu. Email: 1327626007@qq.com.
Abstract: This study explores the impact of public health events, multi-modal projects, multi-project environments, and multi-capacity resource constraints on project scheduling. It describes the comprehensive resource-constrained project scheduling problem (MCMRCMPSP) specifically for public health events, and proposes two approaches for modelling and solving the problem. The objective is to enhance the practical relevance of project scheduling and enrich the problem itself. To improve efficiency and the algorithm for scheduling problems, an enhanced quantum algorithm based on the quantum particle swarm algorithm (QPSO) is proposed. The enhancements include Gaussian variation and a tournament selection strategy. Furthermore, the article integrates multiple heuristic rules with the algorithm to minimize illogical computations, improve computational efficiency, and enhance solution quality. The proposed algorithm’s effectiveness is validated through performance tests and practical application experiments. The results show that the algorithm has superior convergence performance and solution accuracy compared with the traditional QPSO, particle swarm algorithm (PSO), genetic algorithm, ant colony algorithm, and cuckoo algorithm. Thus, the algorithm provides a targeted resource scheduling plan for real-world cases. This research contributes to the field of project scheduling problems and proposes a new solution.
Keywords: Public health events, improved quantum algorithm, multi-mode, multi-project, multi-capability resource-constrained project scheduling
DOI: 10.3233/JIFS-236757
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 4, pp. 10095-10114, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl